China Good quality China Made ISO2531 En545 En598 Corrosion Rigid Flange Universal Coupling

Product Description

Universal coupling
Enables the mechanical jointing of pipes made of different materials and of various outside diameters

Description
Wide outside diameter range: an average of 29 mm.

High performance
– Permanent leak tight joint when compressing the gasket between the end ring and the sleeve CHINAMFG the pipe surface
– Epoxy powder coating (250 μm) and Geomet 500 Gr. B for the bolts.

Ease and speed of installation:
– Angular deflection ± 5° by side.
– Absorbs expansion and contraction.
– Accommodates misalignment.
– Important setting gap.

Conformity to standards
– EN 14525 : Ductile iron wide tolerance couplings and flange adaptors for use with pipes of different materials: ductile iron, Grey iron, Steel, PVC-U, PE, Fiber-cement.
– NF A 48-830: Foundry products – Spheroidal graphite cast iron fittings for PVC drinking water pipes under pressure,
– EN 545: Ductile iron pipes, fittings, accessories and their joints for water pipelines 
– requirements and test methods,
– ISO 2531: Ductile iron pipes, fittings, and accessories and their joints for water applications.

Approval:- Drinking water approved (WRAS).

Note:
– This coupling does not resist to longitudinal forces and pipe pullout will occur. Ensure adequate restraint is provided.
– Not recommended for PE pipes.

Technical data
Range: DN 40 to 600.(Higher DN, please consult uUniversal coupling
Enables the mechanical jointing of pipes made of different materials and of various outside diameters

Description
Wide outside diameter range: an average of 29 mm.

High performance
– Permanent leak tight joint when compressing the gasket between the end ring and the sleeve CHINAMFG the pipe surface
– Epoxy powder coating (250 μm) and Geomet 500 Gr. B for the bolts.

Ease and speed of installation:
– Angular deflection ± 5° by side.
– Absorbs expansion and contraction.
– Accommodates misalignment.
– Important setting gap.

Conformity to standards
– EN 14525 : Ductile iron wide tolerance couplings and flange adaptors for use with pipes of different materials: ductile iron, Grey iron, Steel, PVC-U, PE, Fiber-cement.
– NF A 48-830: Foundry products – Spheroidal graphite cast iron fittings for PVC drinking water pipes under pressure,
– EN 545: Ductile iron pipes, fittings, accessories and their joints for water pipelines 
– requirements and test methods,
– ISO 2531: Ductile iron pipes, fittings, and accessories and their joints for water applications.

Approval:- Drinking water approved (WRAS).

Note:
– This coupling does not resist to longitudinal forces and pipe pullout will occur. Ensure adequate restraint is provided.
– Not recommended for PE pipes.

Technical data
Range: DN 40 to 600.(Higher DN, please consult us)
Max. working pressure: PN 16
Temperatures: from
 
 

2. How soon can I get a price quote?
Once we know the Size, material, drive method we can provide you with 1 competitive price quote within 24 hours.

3. Can I get a sample?
Yes, the samples are free for you. But you need to offer 1 courier account NO. to afford the fee for samples shipping. The samples’ sending usually takes 5-7days.

4. How can my order produced by my brand?
Yes, you can. Pls offer your brand or LOGO design to us(.AI or.PSD format), then we could produce all goods with your brand or LOGO.

5. What’s your delivery time?
Except our legal holiday, it will take 2-4 weeks for us to finish all your orders’ production.

6. Is there a minimum order requirement?
Due to the high machine setup cost and shipping freight, our minimum order quantity is 5pcs

7. Do you have butterfly valve related accessories?
Yes, we have. We have accessories: pneumatic actuators, electric actuators, limit switches, solenoid valves, etc.

8. Will you match competitors’ prices?
If you find a lower price elsewhere for the exact same specification, we will meet or beat that price as long as it is a little higher than our cost price.

9. What are your terms of delivery?
We accept FOB, CIF etc. You can choose the 1 which is the most convenient or cost effective for you.

10. Where can I meet you by face to face?
A,Our headquarter is located in ZheJiang , if you travel to ZheJiang , you can visit our office at any time, we could pick you up from your location in ZheJiang and ZheJiang .
B,Our factories are located in ZheJiang and HangZhou, welcome to visit our factory before you cooperate with us.
C,We will attend China Spring Canton Fair and China Autumn Canton Fair every year, welcome to visit our booth at that time.

11. How can I be your sole agent in our country?
Welcome you to become our sole agent firstly. According to different countries’ demand, if your yearly purchase quantity from us can reach 10000 to 30000 pcs you could be our sole agent in your country. If you wanna know exact quantity requirement for each country, pls feel free to contact us at any time.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Can Rigid Couplings Handle Misalignment Between Shafts?

Rigid couplings are not designed to handle misalignment between shafts. Unlike flexible couplings that can accommodate slight misalignment through their bending or elastic properties, rigid couplings are intended to provide a fixed and immovable connection between two shafts. As a result, any misalignment between the shafts can lead to increased stress and uneven loading on connected components.

It is essential to ensure precise alignment when using rigid couplings to avoid premature wear and failure of the system. The shafts must be perfectly aligned in both the axial and angular directions before installing the rigid coupling. Proper alignment helps distribute the load evenly and reduces stress concentration on specific areas, such as bearings and keyways.

If a system requires some level of misalignment compensation due to factors like thermal expansion or slight shaft deflection, a flexible coupling should be considered instead. Flexible couplings can tolerate small degrees of angular and axial misalignment while still transmitting torque efficiently and protecting the connected equipment from excessive stress and wear.

In summary, rigid couplings are best suited for applications where precise shaft alignment can be achieved and maintained, while flexible couplings are more appropriate for systems with potential misalignment or other dynamic factors that require some degree of flexibility.

rigid coupling

How Does a Rigid Coupling Handle Angular, Parallel, and Axial Misalignment?

Rigid couplings are designed to provide a fixed and rigid connection between two shafts. As such, they do not have any built-in flexibility to accommodate misalignment. Therefore, when using a rigid coupling, it is essential to ensure proper shaft alignment to avoid excessive forces and premature wear on connected equipment.

Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Rigid couplings cannot compensate for angular misalignment, and any angular misalignment should be minimized during installation. Precision alignment techniques, such as laser alignment tools, are often used to achieve accurate angular alignment.

Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the axes of the two shafts are parallel but have a lateral displacement from each other. Rigid couplings cannot accommodate parallel misalignment. Therefore, precise alignment is crucial to prevent binding and excessive forces on the shafts and bearings.

Axial Misalignment: Axial misalignment occurs when the two shafts have an axial (longitudinal) displacement from each other. Rigid couplings cannot address axial misalignment. To prevent thrust loads and additional stresses on bearings, it is essential to align the shafts axially during installation.

In summary, rigid couplings are unforgiving to misalignment and require precise alignment during installation. Any misalignment in a rigid coupling can lead to increased wear, premature failure of components, and reduced overall system efficiency. Therefore, it is crucial to use appropriate alignment techniques and tools to ensure optimal performance and longevity of the connected equipment.

rigid coupling

Types of Rigid Coupling Designs:

There are several types of rigid coupling designs available, each designed to meet specific application requirements. Here are some common types of rigid couplings:

  • 1. Sleeve Couplings: Sleeve couplings are the simplest type of rigid couplings. They consist of a cylindrical sleeve with a bore in the center that fits over the shaft ends. The coupling is secured in place using setscrews or keyways. Sleeve couplings provide a solid and rigid connection between shafts and are easy to install and remove.
  • 2. Clamp or Split Couplings: Clamp couplings, also known as split couplings, are designed with two halves that fit around the shafts and are fastened together with bolts or screws. The split design allows for easy installation and removal without the need to disassemble other components in the system. These couplings are ideal for applications where the shafts cannot be easily moved.
  • 3. Flanged Couplings: Flanged couplings have flanges on each end that are bolted together to form a rigid connection. The flanges add stability and strength to the coupling, making them suitable for heavy-duty applications. They are commonly used in industrial machinery and equipment.
  • 4. Tapered Couplings: Tapered couplings have a tapered inner diameter that matches the taper of the shaft ends. When the coupling is tightened, it creates a frictional fit between the coupling and the shafts, providing a rigid connection. These couplings are often used in applications where high torque transmission is required.
  • 5. Marine or Clampshell Couplings: Marine couplings, also known as clampshell couplings, consist of two halves that encase the shaft ends and are bolted together. These couplings are commonly used in marine applications, such as propeller shafts in boats and ships.
  • 6. Diaphragm Couplings: Diaphragm couplings are a type of rigid coupling that provides some flexibility to accommodate misalignment while maintaining a nearly torsionally rigid connection. They consist of thin metal diaphragms that transmit torque while compensating for minor shaft misalignments.

The choice of rigid coupling design depends on factors such as shaft size, torque requirements, ease of installation, and the level of misalignment that needs to be accommodated. It is essential to select the appropriate coupling design based on the specific needs of the application to ensure optimal performance and reliability.

China Good quality China Made ISO2531 En545 En598 Corrosion Rigid Flange Universal Coupling  China Good quality China Made ISO2531 En545 En598 Corrosion Rigid Flange Universal Coupling
editor by CX 2024-02-18