Product Description
GICLZ Drum Gear Coupling(JB/T8854.3-2N.m, the axle hole combination has: Y/J1, J1/J1 and Y/Y, and G 1 CLZ type drum gear coupling is suitable for the 2 ends of the 2 axle ends which are far away from each other.
Main Dimension And Parameter(JB/T8854.3-2001)
Type | Nominal Torque kN·m |
Allow Speed rpm |
Bore Diameter d1,d2 |
Bore Length Y,L |
D | D1 | D2 | D3 | B1 | C | Rotary Inertia kg·m2 |
Mess kg |
mm | ||||||||||||
GICLZ1 | 0.008 | 7100 | 16,18,19 | 42 | 125 | 95 | 60 | 80 | 57 | 24 | 0.0084 | 5.4 |
GICLZ2 | 1.400 | 6300 | 25,28 | 62 | 145 | 120 | 75 | 95 | 67 | 16 | 0.018 | 9.2 |
GICLZ3 | 2.800 | 5900 | 30,32,35,38 | 82 | 170 | 140 | 95 | 115 | 77 | 7 | 0. 0571 | 16.4 |
GICLZ4 | 5.000 | 5400 | 32,35,38 | 82 | 195 | 165 | 115 | 130 | 89 | 19 | 0.076 | 22.7 |
GICLZ5 | 8.000 | 5000 | 40,42,45,48,50,55,56 | 112 | 225 | 183 | 130 | 150 | 99 | 9.5 | 0.0149 | 36.2 |
GICLZ6 | 11.200 | 4800 | 48,50,55,56 | 112 | 240 | 200 | 145 | 170 | 109 | 11.5 | 0.24 | 46.2 |
GICLZ7 | 15.0 | 4500 | 60,63,65,70,71,75 | 142 | 260 | 230 | 160 | 195 | 122 | 10.5 | 0.43 | 68.4 |
GICLZ8 | 21.2 | 4000 | 65,70,71,75 | 142 | 280 | 245 | 175 | 210 | 132 | 12 | 0.61 | 81.1 |
GICLZ9 | 26.5 | 3500 | 70,71,75 | 142 | 315 | 270 | 200 | 125 | 142 | 18 | 0.94 | 100.1 |
GICLZ10 | 42.5 | 3200 | 80,85,90,95 | 172 | 345 | 300 | 220 | 250 | 165 | 14 | 1.67 | 147.1 |
GICLZ11 | 60.0 | 3000 | 100,110,120 | 212 | 380 | 330 | 260 | 285 | 180 | 14 | 2.98 | 206.3 |
GICLZ12 | 80.0 | 2600 | 120 | 212 | 442 | 380 | 290 | 325 | 208 | 14 | 5.31 | 284.5 |
GICLZ13 | 112 | 2300 | 140,150 | 252 | 482 | 420 | 520 | 360 | 238 | 15 | 9.26 | 402.0 |
GICLZ14 | 160 | 2100 | 160,170,180 | 302 | 520 | 465 | 360 | 410 | 266 | 16 | 15.92 | 582.2 |
GICLZ15 | 224 | 1900 | 190,200,220 | 352 | 580 | 510 | 400 | 450 | 278 | 17 | 25.78 | 778.2 |
GICLZ16 | 335 | 1600 | 200,220 | 352 | 680 | 595 | 465 | 500 | 320 | 16.5 | 16.89 | 1071.0 |
GICLZ17 | 400 | 1500 | 220 | 352 | 710 | 645 | 495 | 530 | 336 | 17 | 60.59 | 1210 |
GICLZ18 | 500 | 1400 | 240,250,260 | 410 | 775 | 675 | 520 | 540 | 351 | 16.5 | 81.75 | 1475 |
GICLZ19 | 630 | 1300 | 260 | 410 | 815 | 715 | 560 | 580 | 372 | 17 | 101.57 | 1603 |
GICLZ20 | 710 | 1200 | 280,300,320 | 470 | 855 | 755 | 585 | 600 | 393 | 20 | 140.03 | 2033 |
GICLZ21 | 900 | 1100 | 300,320 | 470 | 915 | 795 | 620 | 640 | 404 | 20 | 183.49 | 2385 |
GICLZ22 | 950 | 950 | 340,360,380 | 550 | 960 | 840 | 665 | 680 | 415 | 20 | 235.04 | 2452 |
GICLZ23 | 1120 | 900 | 360,380 | 550 | 1571 | 890 | 710 | 720 | 435 | 20 | 323.16 | 3332 |
GICLZ24 | 1250 | 875 | 380 | 550 | 1050 | 925 | 730 | 760 | 445 | 22 | 387.97 | 3639 |
GICLZ25 | 1400 | 850 | 400,420,450,480,500 | 650 | 1120 | 970 | 770 | 800 | 465 | 22 | 485.96 | 4073 |
GICLZ26 | 1600 | 825 | 420,450,480,500 | 650 | 1160 | 990 | 800 | 850 | 475 | 22 | 573.64 | 4527 |
GICLZ27 | 1800 | 800 | 450,480,500 | 650 | 1210 | 1060 | 850 | 900 | 479 | 22 | 789.74 | 5485 |
GICLZ28 | 2000 | 770 | 480,500 | 650 | 1250 | 1080 | 890 | 960 | 517 | 28 | 960.26 | 6050 |
GICLZ29 | 2800 | 725 | 500 | 650 | 1340 | 1200 | 960 | 1571 | 517 | 28 | 1268.98 | 7090 |
GICLZ30 | 3500 | 700 | 530,560,600,630 | 800 | 1390 | 1240 | 1005 | 1070 | 525 | 28 | 1822.02 | 9264 |
♦Product Show
♦Other Products List
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
♦Our Company
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective.
♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.
2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.
4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.
5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.
♦FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.
Q 3:How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: Do you provide samples ? Is it free or extra ?
Yes, we could offer the sample but not for free.Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.
Q 5: How long is your warranty?
A: Our Warranty is 12 month under normal circumstance.
Q 6: What is the MOQ?
A:Usually our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling ?
A:100% self-inspection before packing.
Q 8: Can I have a visit to your factory before the order?
A: Sure,welcome to visit our factory.
Q 9: What’s your payment?
A:1) T/T.
♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Is It Possible to Replace a Shaft Coupling Without Professional Assistance?
Yes, it is possible to replace a shaft coupling without professional assistance, especially if you have some mechanical knowledge and the necessary tools. However, the ease of replacement can vary depending on the type of coupling and the complexity of the equipment. Here are some general steps to guide you through the process:
1. Safety First:
Before starting any work, ensure that the equipment is turned off and disconnected from the power source. Use appropriate personal protective equipment (PPE) to protect yourself from potential hazards.
2. Assess the Coupling Type:
Different types of couplings may have specific installation and removal methods. Identify the type of coupling you need to replace, and consult the manufacturer’s documentation or online resources for guidance.
3. Gather Tools and Materials:
Collect the necessary tools, such as wrenches, sockets, and a puller (if required), to safely remove the old coupling. Have the new coupling ready for installation, ensuring it matches the specifications of the old one.
4. Disassembly:
If your coupling is a split or clamp-style coupling, you may be able to replace it without fully disassembling the connected equipment. Otherwise, you may need to remove other components to access the coupling.
5. Remove Fasteners:
Loosen and remove any fasteners, such as set screws, that secure the old coupling to the shafts. Take care not to damage the shafts during this process.
6. Extraction:
If the old coupling is tightly fitted on the shafts, you may need to use a coupling puller or other appropriate extraction tools to safely remove it.
7. Clean and Inspect:
After removing the old coupling, clean the shaft ends and inspect them for any signs of damage or wear. Also, check for any misalignment issues that may have contributed to the old coupling’s failure.
8. Install New Coupling:
Follow the manufacturer’s instructions for installing the new coupling. Apply appropriate lubrication and ensure the coupling is correctly aligned with the shafts.
9. Fasten Securely:
Tighten the fasteners to the manufacturer’s recommended torque values to securely attach the new coupling to the shafts.
10. Test Run:
After installation, perform a test run of the equipment to ensure the new coupling operates smoothly and without issues.
While it is possible to replace a shaft coupling without professional assistance, keep in mind that some couplings and equipment may require specialized knowledge and tools for safe and proper replacement. If you are uncertain about the process or encounter any difficulties, it is advisable to seek help from a qualified professional or technician to avoid potential damage to the equipment or injury to yourself.
“`
How to Identify Signs of Wear or Failure in a Shaft Coupling
Regular inspection and monitoring are essential to identify signs of wear or potential failure in a shaft coupling. Detecting issues early can help prevent costly downtime and equipment damage. Here are common signs to look for:
1. Visible Damage:
Inspect the coupling for visible signs of damage, such as cracks, chips, or deformation. These can indicate mechanical stress or overload.
2. Abnormal Noise or Vibration:
Unusual noise or excessive vibration during operation may indicate misalignment, worn-out components, or a coupling nearing its failure point.
3. Increased Temperature:
If the coupling becomes noticeably hotter during operation than usual, it could be a sign of friction or misalignment issues.
4. Shaft Misalignment:
Check for misalignment between the shafts connected by the coupling. Misalignment can lead to increased stress on the coupling and its components.
5. Excessive Backlash:
If the coupling exhibits too much free play or rotational play before torque transmission, it might indicate wear or fatigue in the coupling’s components.
6. Lubrication Issues:
Inspect the coupling for lubrication leaks or insufficient lubrication, which can lead to increased friction and wear.
7. Elastomeric Element Deterioration:
If the coupling uses elastomeric elements (e.g., rubber or polyurethane), check for signs of deterioration, such as cracking, softening, or deformation.
8. Bolts and Fasteners:
Examine the bolts and fasteners connecting the coupling components. Loose or damaged bolts can lead to misalignment and coupling failure.
9. Age and Service Life:
Consider the age and service life of the coupling. If it has been in use for a long time or exceeds the manufacturer’s recommended service life, it may be more susceptible to wear and failure.
10. Abnormal Performance:
Monitor the overall performance of the connected equipment. Any abnormal behavior, such as reduced power transmission or erratic operation, could be indicative of coupling issues.
If any of these signs are observed, it’s crucial to take immediate action. Depending on the severity of the issue, this may involve replacing worn components, realigning the shafts, or replacing the entire coupling. Regular maintenance and periodic inspections are key to identifying these signs early and ensuring the coupling operates optimally and safely.
“`
How Does a Flexible Shaft Coupling Differ from a Rigid Shaft Coupling?
Flexible shaft couplings and rigid shaft couplings are two distinct types of couplings, each designed to serve different purposes in mechanical power transmission. Here are the key differences between the two:
1. Flexibility:
The most significant difference between flexible and rigid shaft couplings is their flexibility. Flexible couplings are designed with elements that can deform or flex to accommodate misalignments between the shafts. This flexibility allows for angular, parallel, and axial misalignments, making them suitable for applications where shafts are not perfectly aligned. In contrast, rigid couplings do not have this flexibility and require precise alignment between the shafts.
2. Misalignment Compensation:
Flexible couplings excel in compensating for misalignments, making them ideal for applications with dynamic conditions or those prone to misalignment due to thermal expansion or vibrations. Rigid couplings, on the other hand, are used in applications where perfect alignment is critical to prevent vibration, wear, and premature failure.
3. Damping Properties:
Flexible couplings, particularly those with elastomeric or flexible elements, offer damping properties, meaning they can absorb and reduce shocks and vibrations. This damping capability helps protect the connected equipment from damage and enhances system reliability. Rigid couplings lack this damping ability and can transmit shocks and vibrations directly between shafts.
4. Torque Transmission:
Both flexible and rigid couplings are capable of transmitting torque from the driving shaft to the driven shaft. However, the torque transmission of flexible couplings can be limited compared to rigid couplings, especially in high-torque applications.
5. Types of Applications:
Flexible couplings find applications in a wide range of industries, especially in situations where misalignment compensation, vibration damping, and shock absorption are essential. They are commonly used in conveyors, pumps, compressors, printing presses, and automation systems. Rigid couplings are used in precision machinery and applications that demand perfect alignment, such as high-speed spindles and certain types of precision equipment.
6. Installation:
Flexible couplings are relatively easier to install due to their ability to accommodate misalignment. On the other hand, rigid couplings require careful alignment during installation to ensure proper functioning and prevent premature wear.
The choice between a flexible and a rigid shaft coupling depends on the specific requirements of the application. If misalignment compensation, damping, and flexibility are critical, a flexible coupling is the preferred choice. If precision alignment and direct torque transmission are essential, a rigid coupling is more suitable.
“`
editor by CX 2024-03-12