Product Description
Product DescriptionFire fighting ductile iron grooved coupling and fitting with UL FM CE ISO certification 1.Name:FM UL Approved ductile iron grooved pipe fitting rigid coupling (Rigid coupling, Reducing coupling, Flexible coupling, Mechanical Tee, Mechanical cross, U-Bolt mechanical tee, elbow, cross, tee, flange adapter, split flange,cap
Brand | JUNT |
Company Type | Manufacturer |
Standard | ANSI,ASTM,DIN,JIS,GB,BS |
Materal | Ductile Iron (ASTM A536 Grade 65-45-12) |
Color | Red RAL3000 , Orange , Bule or according to custom requirements |
Surface Treatment | Paint, Epoxy, Galvanization or Dacroment |
Threaded | BSPT NPT |
Certification | UL FM CE ISO 9001 |
Delivery Time | Normally within 15-30days |
Pressure | 300PSI 500PSI 2.5MPA |
Payment Terms | T/T L/C OR Other |
Useage
|
1) Automatic sprinkler system for fire production on commercial,civil and municipal constructions like water supplying ,gas supplying , heat supplying , etc |
2)Industrial pipeline system on shipping , mine , textile oil field , power plant , etc | |
3)Pipeline system on subway station , railway station airport , seaport, brided , etc |
Our company
HangZhou CHINAMFG Machinery Auxiliaries Co.,Ltd is established in 2004,is a professional manufacturer specialized in the R&D,Pro-duction ,sale and service of ductile iron Grooved Couplings and Pipe Fittings. Our company is a large enterprise group composed of 1 main factory, 3 branch factories which cover-s an area of 68000m2 and has an annual production capacity of more than 50000 tons. We have an experienced team, around 500 skilled staff members, 20 percent of them are engineers and technicians who are professional and hardworking.We are equipped with automation molding line, China 416 automation molding line, Erich automation sand mixing line, CNC lathe, WINTER mold machining center and so on.
We have a very professional laboratory with full serious of testing and inspection as leak testing, raw material receiving inspection, batch chemical composition inspection, microstructure testing, dimension inspection, first article inspection, in-process inspection and final visual inspection in order to ensure the product quality.
Packing&Delivery
1)JUNT Large boxes ,non-wood pallets (110L*110W*12H)with PE film,27boxes per pallet at most.
2)JUNT Samal boxes,non-wood pallets(110L*110W*12H)with PE film ,54boxes per pallet at most.
3)We can also pack products as per customer’s requirement.
4) Delivery Details : 5-30 days after order
FAQQ: Are you trading company or manufacturer ?
A: We are factory.Exported abroad directly from our own factories,so the price is competitive.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shipp-ment.
If you have another question, pls feel free to contact us as below:
Alisa shi
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Can Rigid Couplings Accommodate High Torque and High-Speed Applications?
Yes, rigid couplings are well-suited for high torque and high-speed applications. Their design and construction allow them to efficiently transmit large amounts of torque and handle high rotational speeds without compromising performance or introducing backlash.
Rigid couplings are typically made from robust materials, such as steel or aluminum, which provide high strength and stiffness. This allows them to withstand substantial torque loads without deformation or failure. Additionally, rigid couplings do not have flexible elements, such as elastomers or springs, which can be a limiting factor in high-torque applications.
The absence of flexible elements also means that rigid couplings have minimal backlash. Backlash is the clearance between mating teeth in a coupling and can cause position inaccuracies, especially in high-precision systems. Since rigid couplings have a solid, one-piece design, they offer precise and immediate torque transmission, making them suitable for applications requiring high accuracy and repeatability.
Furthermore, the solid construction of rigid couplings allows them to handle high rotational speeds. They do not exhibit the bending or torsional flexibility seen in some other coupling types, which can be limiting factors in high-speed applications. As a result, rigid couplings are commonly used in various high-speed machinery, such as power transmission systems, motors, pumps, and industrial equipment.
However, it is essential to ensure proper alignment and installation when using rigid couplings in high-torque and high-speed applications. Any misalignment between the shafts can lead to increased stresses and premature failure. Regular maintenance, including shaft alignment checks, can help ensure optimal performance and longevity in such demanding applications.
In summary, rigid couplings are an excellent choice for high torque and high-speed applications due to their robust design, minimal backlash, and ability to provide precise torque transmission. When correctly installed and maintained, rigid couplings can reliably handle the demands of various industrial and mechanical systems.
What Role Does a Rigid Coupling Play in Reducing Downtime and Maintenance Costs?
A rigid coupling can play a significant role in reducing downtime and maintenance costs in mechanical systems by providing a robust and reliable connection between two shafts. Here are the key factors that contribute to this:
1. Durability and Longevity: Rigid couplings are typically made from high-quality materials such as steel or stainless steel, which offer excellent durability and resistance to wear. As a result, they have a longer service life compared to some other types of couplings that may require frequent replacements due to wear and fatigue.
2. Elimination of Wear-Prone Components: Unlike flexible couplings that include moving parts or elements designed to accommodate misalignment, rigid couplings do not have any wear-prone components. This absence of moving parts means there are fewer components that can fail, reducing the need for regular maintenance and replacement.
3. Minimization of Misalignment-Related Issues: Rigid couplings require precise shaft alignment during installation. When installed correctly, they help minimize misalignment-related issues such as vibration, noise, and premature bearing failure. Proper alignment also reduces the risk of unexpected breakdowns and maintenance requirements.
4. Increased System Efficiency: The rigid connection provided by a rigid coupling ensures efficient power transmission between the two shafts. There is minimal power loss due to flexing or bending, leading to better overall system efficiency. This efficiency can result in reduced energy consumption and operating costs.
5. Low Maintenance Requirements: Rigid couplings generally require minimal maintenance compared to some other coupling types. Once properly installed and aligned, they can operate for extended periods without needing frequent inspection or adjustment.
6. Reduced Downtime: The robust and reliable nature of rigid couplings means that they are less likely to fail unexpectedly. This increased reliability helps reduce unscheduled downtime, allowing the mechanical system to operate smoothly and consistently.
7. Cost-Effective Solution: While rigid couplings may have a higher upfront cost than some other coupling types, their long-term durability and low maintenance requirements make them a cost-effective solution over the life cycle of the equipment.
In conclusion, a rigid coupling’s ability to provide a durable and dependable connection, along with its low maintenance requirements and efficient power transmission, contributes significantly to reducing downtime and maintenance costs in mechanical systems.
Advantages of Using Rigid Couplings in Mechanical Systems:
Rigid couplings offer several advantages when used in mechanical systems. These advantages make them a preferred choice in certain applications where precise alignment and high torque transmission are essential. Here are the key advantages of using rigid couplings:
- 1. High Torque Transmission: Rigid couplings are designed to handle high torque and power transmission without any loss due to flexibility. They provide a direct and solid connection between shafts, allowing for efficient transfer of rotational motion.
- 2. Precise Alignment: Rigid couplings maintain precise alignment between connected shafts. When installed correctly, they ensure that the two shafts are perfectly aligned, which is crucial for applications where accurate positioning and synchronization are required.
- 3. Synchronous Rotation: The rigid connection provided by these couplings enables synchronous rotation of the connected shafts. This is particularly important in applications where components must move in precise coordination with each other.
- 4. Simple Design: Rigid couplings have a straightforward design with minimal moving parts. This simplicity makes them easy to install and maintain, reducing the chances of mechanical failure.
- 5. Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective. Their simple design and robust construction contribute to their affordability.
- 6. High Strength and Durability: Rigid couplings are typically made from strong and durable materials such as steel, stainless steel, or aluminum. These materials can withstand heavy loads and provide long-lasting performance in demanding applications.
Rigid couplings are commonly used in various industries and applications, including high-precision machinery, robotics, automation systems, precision motion control, and machine tools. They are especially beneficial in scenarios where misalignment needs to be minimized or avoided altogether.
It’s important to note that while rigid couplings offer these advantages, they are not suitable for applications where shaft misalignment or shock absorption is required. In such cases, flexible couplings or other specialized coupling types may be more appropriate.
editor by CX 2024-05-03