China wholesaler Gic Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling

Product Description

GIC Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling

Description of GIC Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling 
>Integrated structure, the overall use of high-strength aluminum alloy materials
>Elastic action compensates radial, angular and axial deviation
>No gap shaft and sleeve connection, suitable for CHINAMFG and reverse rotation
>Designed for encoder and stepper motor
>Fastening method of clamping screw

 

Catalogue of GIC Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling 

 

 

model parameter

common bore diameter d1,d2

ΦD

L

L1

L2

F

M

tightening screw torque
(N.M)

GIC-12xl8.5

2,3,4,5,6

12

18.5

0.55

1.3

2.5

M2.5

1

GIC-16xl6

3,4,5,6,6.35

16

16

0.55

1.4

3.18

M2.5

1

GIC-16×23

3,4,5,6,6.35

16

23

0.55

1.4

3.18

M2.5

1

GIC-19×23

3,4,5,6,6.35,7,8

19

23

0.55

1.4

3.18

M2.5

1

GIC-20×20

4,5,6,6.35,7,8,10

20

20

0.55

1.5

3.75

M2.5

1

GIC-20×26

4,5,6,6.35,7,8,10

20

26

0.55

1.5

3.75

M3

1.5

GIC-25×25

5,6,6.35,7,8,9,9.525,10,11,12

25

25

0.6

1.7

4.84

M3

1.5

GIC-25×31

5,6,6.35,7,8,9,9.525,10,11,12

25

31

0.6

1.8

4.46

M3

1.5

GIC-28.5×38

6,6.35,8,9,9.525,10,11,12,12.7,14

28.5

38

0.8

2.1

5.62

M4

2.5

GIC-32×32

8,9,9.525,10,11,12,12.7,14,15,16

32

32

0.8

2.3

6.07

M4

2.5

GIC-32×41

8,9,9.525,10,11,12,12.7,14,15,16

32

41

0.8

2.3

6.02

M4

2.5

GIC-38×41

8,9,9.525,10,11,12,14,15,16,17,18,19

38

41

0.8

2.7

5.32

M5

7

GIC-40×50

8,9,9.525,10,11,12,14,15,16,17,18,19,20

40

50

0.8

2.7

6.2

M5

7

GIC-40×56

8,10,11,12,12.7,14,15,16,17,18,19,20

40

56

0.8

2.7

8.5

M5

7

GIC-42×50

10,11,12,12.7,14,15,16,17,18,19,20,22,24

42

50

0.8

2.7

6.2

M5

7

GIC-50×50

10,12,12.7,14,15,16,17,18,19,20,22,24,25,28

50

50

0.8

2.9

7.22

M6

12

GIC-50×71

10,12,12.7,14,15,16,17,18,19,20,222425,28

50

71

0.8

3.3

8.5

M6

12

model parameter

Rated torque(N.m)

allowable eccentricity

(mm)

allowable deflection angle

(°)

allowable axial deviation

(mm)

maximum speed

(rpm)

static torsional stiffness

(N.M/rad)

weight

(g)

GIC-12xl8.5

0.5

0.1

2

±0.2

11000

60

4.8

GIC-16xl6

0.5

0.1

2

±0.2

10000

80

8

GIC-16×23

0.5

0.1

2

±0.2

9500

80

9.3

GIC-19×23

1

0.1

2

±0.2

9500

80

13

GIC-20×20

1

0.1

2

±0.2

10000

170

14

GIC-20×26

1

0.1

2

±0.2

7600

170

16.5

GIC-25×25

2

0.15

2

±0.2

6100

780

26

GIC-25×31

2

0.15

2

±0.2

6100

380

29

GIC-28.5×38

3

0.15

2

±0.2

5500

400

51

GIC-32×32

4

0.15

2

±0.2

5000

1100

56

GIC-32×41

4

0.15

2

±0.2

500

500

65

GIC-38×41

6.5

0.2

2

±0.2

650

650

107

GIC-40×50

6.5

0.2

2

±0.2

600

650

135

GIC-40×56

8

0.2

2

±0.2

800

800

142

GIC-42×50

8.5

0.2

2

±0.2

800

850

135

GIC-50×50

20

0.2

2

±0.2

1000

1000

220

GIC-50×71

20

0.2

2

±0.2

1000

1000

330

 

 

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid shaft coupling

What are the potential drawbacks or limitations of using rigid shaft couplings in certain applications?

Rigid shaft couplings, while offering benefits in certain scenarios, also have limitations that should be considered when selecting them for specific applications:

  • Minimal Misalignment Compensation: Rigid couplings have limited ability to compensate for shaft misalignment, making them less suitable for applications with significant misalignment.
  • Transmits Vibrations: Rigid couplings do not dampen vibrations, which can lead to increased wear and fatigue in connected components and decrease overall system lifespan.
  • Higher Stress Concentration: Due to their rigid nature, these couplings can result in higher stress concentrations at the coupling ends, potentially leading to premature failure.
  • Noisy Operation: Rigid couplings can amplify noise generated by connected equipment, contributing to a noisier operating environment.
  • Requires Precise Alignment: Proper alignment during installation is crucial to prevent excessive loads on equipment and ensure reliable operation.
  • Less Torsional Damping: Rigid couplings lack the torsional damping capabilities of some other coupling types, which may be necessary in systems with varying loads.
  • Less Forgiving: Rigid couplings can transmit shocks and impacts directly to connected equipment, which may not be suitable for applications with frequent starts, stops, or heavy loads.

It’s important to carefully assess the specific requirements of an application and consider factors such as misalignment, vibration, torque transmission, and environmental conditions when deciding whether to use a rigid shaft coupling. In cases where the limitations of rigid couplings may pose challenges, other coupling types such as flexible, torsionally soft, or damping couplings could be more appropriate alternatives.

rigid shaft coupling

How do rigid shaft couplings compare to flexible couplings in terms of torque transmission and misalignment handling?

Rigid shaft couplings and flexible couplings differ in their ability to handle torque transmission and misalignment. Here’s a comparison of these aspects:

  • Torque Transmission: Rigid shaft couplings offer excellent torque transmission due to their solid construction. They efficiently transmit high torque loads without significant power loss. Flexible couplings, on the other hand, may have some inherent power loss due to their flexibility.
  • Misalignment Handling: Flexible couplings excel in compensating for misalignment between shafts. They can accommodate angular, parallel, and axial misalignments, reducing stress on connected equipment. Rigid couplings are limited in their misalignment compensation, primarily handling minimal misalignments. Significant misalignment can lead to increased wear and premature failure.

The choice between rigid and flexible couplings depends on the specific requirements of the application. If precise torque transmission and minimal misalignment are priorities, rigid couplings may be suitable. However, if misalignment compensation and vibration dampening are crucial, flexible couplings are a better option.

rigid shaft coupling

What are the Materials Commonly Used to Manufacture Rigid Shaft Couplings, and How Do They Impact Performance?

Rigid shaft couplings are typically made from a variety of materials, and the choice of material can significantly impact the performance of the coupling in specific applications. Some common materials used in manufacturing rigid shaft couplings include:

  • Steel: Steel is one of the most commonly used materials for rigid shaft couplings. It offers excellent strength and durability, making it suitable for high-torque and heavy-duty applications. Steel couplings can withstand significant stresses and provide reliable torque transmission.
  • Stainless Steel: Stainless steel couplings offer the same benefits as regular steel couplings but with the added advantage of corrosion resistance. They are commonly used in applications where the coupling may be exposed to harsh environments or moisture.
  • Aluminum: Aluminum couplings are lightweight and have good corrosion resistance. They are often used in applications where weight reduction is essential, such as in aerospace and automotive industries.
  • Brass: Brass couplings are known for their excellent machinability and corrosion resistance. They are commonly used in applications where electrical conductivity is required.
  • Cast Iron: Cast iron couplings are robust and offer good resistance to wear and tear. They are commonly used in industrial machinery and equipment.

The choice of material depends on various factors, including the application’s operating conditions, such as torque requirements, temperature, and environmental conditions. For example, in high-torque applications, steel or stainless steel couplings are often preferred due to their high strength. On the other hand, aluminum couplings are favored in applications where weight reduction is critical.

It is essential to consider the specific needs of the application and the coupling’s material properties to ensure optimal performance, longevity, and reliability of the rigid shaft coupling.

China wholesaler Gic Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling  China wholesaler Gic Series Clamping Coupling Rigid Shaft Rigid Shaft Coupling
editor by CX 2024-05-06